Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.133
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612510

RESUMO

The ATP-dependent caseinolytic protease (Clp) system has been reported to play an important role in plant growth, development, and defense against pathogens. However, whether the Clp system is involved in plant defense against herbivores remains largely unclear. We explore the role of the Clp system in rice defenses against brown planthopper (BPH) Nilaparvata lugens by combining chemical analysis, transcriptome, and molecular analyses, as well as insect bioassays. We found the expression of a rice Clp proteolytic subunit gene, OsClpP6, was suppressed by infestation of BPH gravid females and mechanical wounding. Silencing OsClpP6 enhanced the level of BPH-induced jasmonic acid (JA), JA-isoleucine (JA-Ile), and ABA, which in turn promoted the production of BPH-elicited rice volatiles and increased the resistance of rice to BPH. Field trials showed that silencing OsClpP6 decreased the population densities of BPH and WBPH. We also observed that silencing OsClpP6 decreased chlorophyll content in rice leaves at early developmental stages and impaired rice root growth and seed setting rate. These findings demonstrate that an OsClpP6-mediated Clp system in rice was involved in plant growth-defense trade-offs by affecting the biosynthesis of defense-related signaling molecules in chloroplasts. Moreover, rice plants, after recognizing BPH infestation, can enhance rice resistance to BPH by decreasing the Clp system activity. The work might provide a new way to breed rice varieties that are resistant to herbivores.


Assuntos
Ciclopentanos , Hemípteros , Oryza , Oxilipinas , Feminino , Animais , Proteases Dependentes de ATP , Oryza/genética , Melhoramento Vegetal , Peptídeo Hidrolases , Isoleucina , Hemípteros/genética , Trifosfato de Adenosina
2.
Sci Total Environ ; 926: 172035, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38565349

RESUMO

Metabolic alternation is a typical characteristic of insecticide resistance in insects. However, mechanisms underlying metabolic alternation and how altered metabolism in turn affects insecticide resistance are largely unknown. Here, we report that nicotinamide levels are decreased in the imidacloprid-resistant strain of Nilaparvata lugens, may due to reduced abundance of the symbiotic bacteria Arsenophonus. Importantly, the low levels of nicotinamide promote imidacloprid resistance via metabolic detoxification alternation, including elevations in UDP-glycosyltransferase enzymatic activity and enhancements in UGT386B2-mediated metabolism capability. Mechanistically, nicotinamide suppresses transcriptional regulatory activities of cap 'n' collar isoform C (CncC) and its partner small muscle aponeurosis fibromatosis isoform K (MafK) by scavenging the reactive oxygen species (ROS) and blocking the DNA binding domain of MafK. In imidacloprid-resistant N. lugens, nicotinamide deficiency re-activates the ROS/CncC signaling pathway to provoke UGT386B2 overexpression, thereby promoting imidacloprid detoxification. Thus, nicotinamide metabolism represents a promising target to counteract imidacloprid resistance in N. lugens.


Assuntos
Hemípteros , Inseticidas , Animais , Inseticidas/toxicidade , Espécies Reativas de Oxigênio , Neonicotinoides , Nitrocompostos/toxicidade , Transdução de Sinais , Isoformas de Proteínas , Niacinamida
3.
Neotrop Entomol ; 53(2): 254-276, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575843

RESUMO

Cylindrostethus Fieber, 1861 is one of the most striking genera of water striders (Insecta: Hemiptera: Gerridae) and has Pantropical distribution. Members of this group can be recognized by the very long, cylindrical body; the short antennomere IV; the short labium not reaching the mesosternum; and by characteristics of the abdomen of males and females. Although Neotropical representatives of the genus have been revised, there are pending taxonomic issues related to this fauna, and that of the Eastern Hemisphere has been barely studied in recent years. Here, we present a short note about the authorship of Cylindrostethus, an updated key to all species of the genus, a new synonymy, and the description of a previously unknown macropterous male of C. hungerfordi Drake and Harris.


Assuntos
Hemípteros , Heterópteros , Feminino , Masculino , Animais , Insetos , Água
4.
J Gen Virol ; 105(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38602389

RESUMO

A negative-strand symbiotic RNA virus, tentatively named Nilaparvata lugens Bunyavirus (NLBV), was identified in the brown planthopper (BPH, Nilaparvata lugens). Phylogenetic analysis indicated that NLBV is a member of the genus Mobuvirus (family Phenuiviridae, order Bunyavirales). Analysis of virus-derived small interfering RNA suggested that antiviral immunity of BPH was successfully activated by NLBV infection. Tissue-specific investigation showed that NLBV was mainly accumulated in the fat-body of BPH adults. Moreover, NLBV was detected in eggs of viruliferous female BPHs, suggesting the possibility of vertical transmission of NLBV in BPH. Additionally, no significant differences were observed for the biological properties between NLBV-infected and NLBV-free BPHs. Finally, analysis of geographic distribution indicated that NLBV may be prevalent in Southeast Asia. This study provided a comprehensive characterization on the molecular and biological properties of a symbiotic virus in BPH, which will contribute to our understanding of the increasingly discovered RNA viruses in insects.


Assuntos
Hemípteros , Orthobunyavirus , Vírus de RNA , Animais , Feminino , Filogenia , Insetos , Vírus de RNA/genética
5.
Sci Rep ; 14(1): 8137, 2024 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584175

RESUMO

The design and implementation of Philaenus spumarius control strategies can take advantage of properly calibrated models describing and predicting the phenology of vector populations in agroecosystems. We developed a temperature-driven physiological-based model based on the system of Kolmogorov partial differential equations to predict the phenological dynamics of P. spumarius. The model considers the initial physiological age distribution of eggs, the diapause termination process, and the development rate functions of post-diapausing eggs and nymphal stages, estimated from data collected in laboratory experiments and field surveys in Italy. The temperature threshold and cumulative degree days for egg diapause termination were estimated as 6.5 °C and 120 DD, respectively. Preimaginal development rate functions exhibited lower thresholds ranging between 2.1 and 5.0 °C, optimal temperatures between 26.6 and 28.3 °C, and upper threshold between 33.0 and 35 °C. The model correctly simulates the emergence of the 3rd, 4th, and 5th nymphal instars, key stages to target monitoring actions and control measures against P. spumarius. Precision in simulating the phenology of the 1st and 2nd nymphal stages was less satisfactory. The model is a useful rational decision tool to support scheduling monitoring and control actions against the late and most important nymphal stages of P. spumarius.


Assuntos
Diapausa , Hemípteros , Animais , Temperatura , Hemípteros/fisiologia , Itália , Ninfa
6.
Zoolog Sci ; 41(2): 167-176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587911

RESUMO

The treehoppers (Hemiptera, Membracidae) are known for possessing a large three-dimensional structure called a helmet. Although some ecological functions of the helmet have already been elucidated, the developmental mechanisms underlying the complex and diverse morphology of the helmet are still largely unknown. The process of helmet formation was first described in Antianthe expansa, which possesses a simple roof-shaped helmet. However, the developmental process in species with more complex helmet morphologies remains largely unexplored. Hence, in this study, we used Poppea capricornis, which possesses a more complex helmet structure than A. expansa, to investigate the helmet development using paraffin sections, micro-CT, and scanning electronic microscopy. Our focus was on the overall helmet developmental process common to both species and formation of structures unique to Poppea and its comparison to Antianthe. As a result, we discovered that miniature structures were also formed in Poppea, similar to Antianthe, during the helmet formation. Common structures that were shared between the two species were discernible at this stage. Additionally, we observed that suprahumeral horns and posterior horns, two morphological traits specific to the Poppea helmet that are apparently similar anatomically, are formed through two distinctly different developmental mechanisms. The suprahumeral horns appeared to be formed by utilizing the nymphal suprahumeral bud as a mold, while we could not detect any nymphal structures potentially used for a mold in the posterior horns formation. Our findings suggest that the helmet formation mechanisms of Antianthe and Poppea employ a common mechanism but form species-specific structures by multiple mechanisms.


Assuntos
Hemípteros , Animais , Dispositivos de Proteção da Cabeça , Especificidade da Espécie
7.
Sci Rep ; 14(1): 8174, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589427

RESUMO

Sustainable and effective means to control flying insect vectors are critically needed, especially with widespread insecticide resistance and global climate change. Understanding and controlling vectors requires accurate information about their movement and activity, which is often lacking. The Photonic Fence (PF) is an optical system that uses machine vision, infrared light, and lasers to identify, track, and interdict vectors in flight. The PF examines an insect's outline, flight speed, and other flight parameters and if these match those of a targeted vector species, then a low-power, retina-safe laser kills it. We report on proof-of-concept tests of a large, field-sized PF (30 mL × 3 mH) conducted with Aedes aegypti, a mosquito that transmits dangerous arboviruses, and Diaphorina citri, a psyllid which transmits the fatal huanglongbing disease of citrus. In tests with the laser engaged, < 1% and 3% of A. aegypti and D. citri, respectfully, were recovered versus a 38% and 19% recovery when the lacer was silenced. The PF tracked, but did not intercept the orchid bee, Euglossa dilemma. The system effectively intercepted flying vectors, but not bees, at a distance of 30 m, heralding the use of photonic energy, rather than chemicals, to control flying vectors.


Assuntos
Citrus , Hemípteros , Dispositivos Ópticos , Humanos , Animais , Mosquitos Vetores , Resistência a Inseticidas , Doenças das Plantas
8.
Genome Biol Evol ; 16(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38577764

RESUMO

Sap-feeding insects often maintain two or more nutritional endosymbionts that act in concert to produce compounds essential for insect survival. Many mealybugs have endosymbionts in a nested configuration: one or two bacterial species reside within the cytoplasm of another bacterium, and together, these bacteria have genomes that encode interdependent sets of genes needed to produce key nutritional molecules. Here, we show that the mealybug Pseudococcus viburni has three endosymbionts, one of which contributes only two unique genes that produce the host nutrition-related molecule chorismate. All three bacterial endosymbionts have tiny genomes, suggesting that they have been coevolving inside their insect host for millions of years.


Assuntos
Hemípteros , Simbiose , Animais , Filogenia , Simbiose/genética , Hemípteros/genética , Hemípteros/microbiologia , Insetos , Bactérias/genética
9.
Mol Phylogenet Evol ; 195: 108071, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579933

RESUMO

Phylogenomic analysis based on nucleotide sequences of 398 nuclear gene loci for 67 representatives of the leafhopper genus Neoaliturus yielded well-resolved estimates of relationships among species of the genus. Subgenus Neoaliturus (Neoaliturus) is consistently paraphyletic with respect to Neoaliturus (Circulifer). The analysis revealed the presence of at least ten genetically divergent clades among specimens consistent with the previous morphology-based definition of the leafhopper genus "Circulifer" which includes three previously recognized "species complexes." Specimens of the American beet leafhopper, N. tenellus (Baker), collected from the southwestern USA consistently group with one of these clades, comprising specimens from the eastern Mediterranean. Some of the remaining lineages are consistent with ecological differences previously observed among eastern Mediterranean populations and suggest that N. tenellus, as previously defined, comprises multiple monophyletic species, distinguishable by slight morphological differences.


Assuntos
Beta vulgaris , Peixes-Gato , Hemípteros , Animais , Filogenia , Hemípteros/genética
10.
Proc Natl Acad Sci U S A ; 121(16): e2318783121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588412

RESUMO

Communication between insects and plants relies on the exchange of bioactive molecules that traverse the species interface. Although proteinic effectors have been extensively studied, our knowledge of other molecules involved in this process remains limited. In this study, we investigate the role of salivary microRNAs (miRNAs) from the rice planthopper Nilaparvata lugens in suppressing plant immunity. A total of three miRNAs were confirmed to be secreted into host plants during insect feeding. Notably, the sequence-conserved miR-7-5P is specifically expressed in the salivary glands of N. lugens and is secreted into saliva, distinguishing it significantly from homologues found in other insects. Silencing miR-7-5P negatively affects N. lugens feeding on rice plants, but not on artificial diets. The impaired feeding performance of miR-7-5P-silenced insects can be rescued by transgenic plants overexpressing miR-7-5P. Through target prediction and experimental testing, we demonstrate that miR-7-5P targets multiple plant genes, including the immune-associated bZIP transcription factor 43 (OsbZIP43). Infestation of rice plants by miR-7-5P-silenced insects leads to the increased expression of OsbZIP43, while the presence of miR-7-5P counteracts this upregulation effect. Furthermore, overexpressing OsbZIP43 confers plant resistance against insects which can be subverted by miR-7-5P. Our findings suggest a mechanism by which herbivorous insects have evolved salivary miRNAs to suppress plant immunity, expanding our understanding of cross-kingdom RNA interference between interacting organisms.


Assuntos
Hemípteros , MicroRNAs , Oryza , Animais , Interferência de RNA , MicroRNAs/genética , MicroRNAs/metabolismo , Saliva , Hemípteros/fisiologia , Imunidade Vegetal/genética , Oryza/genética
11.
Microb Biotechnol ; 17(4): e14468, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38635158

RESUMO

The sweet potato whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is responsible for significant crop losses and presents one of the greatest challenges for global agricultural pest management. Management of whitefly populations and associated plant viral diseases is hindered by widespread whitefly resistance to chemical insecticides. An alternative control approach involves the use of insect-specific neurotoxins, but these require delivery from the whitefly gut into the haemocoel. Here we demonstrate that the coat protein (CP) of a begomovirus, Tomato yellow leaf curl virus, is sufficient for delivery of fused proteins into the whitefly haemocoel without virion assembly. Following feeding on the recombinant CP-P-mCherry fusion (where -P- is a proline-rich linker), mCherry fluorescence was detected in the dorsal aorta and pericardial cells of the whitefly, but not in those of whitefly fed on negative control treatments, indicating effective CP-mediated delivery of mCherry into the whitefly haemocoel. Significant mortality was observed in whiteflies fed on a fusion of CP-P to the insect-specific neurotoxin Hv1a, but not in whiteflies fed on CP-P fused to a disarmed Hv1a mutant. Begomovirus coat protein - insect neurotoxin fusions hold considerable potential for transgenic resistance to whitefly providing valuable tools for whitefly management.


Assuntos
Hemípteros , Vírus de Plantas , Animais , Neurotoxinas , Agricultura , Fluorescência
12.
Elife ; 132024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602271

RESUMO

The bacterium responsible for a disease that infects citrus plants across Asia facilitates its own proliferation by increasing the fecundity of its host insect.


Assuntos
Citrus , Hemípteros , Animais , Citrus/microbiologia , Plantas , Reprodução , Ásia , Doenças das Plantas/microbiologia
13.
PLoS One ; 19(4): e0295335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635824

RESUMO

The corn planthopper, Peregrinus maidis, is an economically important pest of corn and sorghum. Here we report the initial steps towards developing a CRISPR-based control method, precision guided sterile insect technique (pgSIT), for this hemipteran pest. Specifically, we evaluated the potential of transformer-2 (tra-2) as a target for sterilizing insects. First, we identified tra-2 transcripts within our P. maidis transcriptome database and performed RNA interference (RNAi) to confirm functional conservation. RNAi-mediated knockdown of Pmtra-2 in nymphs transformed females into pseudomales with deformed ovipositors resembling male claspers. While males showed no overt difference in appearance, they were indeed sterile. Importantly, the results were similar to those observed in another planthopper, Nilaparvata lugens. We also used CRISPR/Cas9 genome editing to assess the impact of tra-2 knockout in injectees. CRISPR-mediated knockout of Pmtra-2 had lethal effects on embryos, and hence not many injectees reached adulthood. However, mosaic knockout of Pmtra-2 did impact female and male fertility, which supports the use of tra-2 as a target for pgSIT in this hemipteran species.


Assuntos
Hemípteros , Feminino , Masculino , Animais , Interferência de RNA , Hemípteros/genética , Edição de Genes , Ninfa
14.
PLoS One ; 19(4): e0301471, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625892

RESUMO

An invasive species, Pochazia shantungensis (Hemiptera: Ricaniidae), causes serious economic damage to fruit trees. In Korea, this pest is mainly managed using chemical insecticides. However, the management timing and insecticides for P. shantungensis negatively affect honeybee populations. Thus, this study estimated the decision-making level for P. shantungensis in persimmons to decrease insecticide application and increase management efficiency. We determined which developmental stage (i.e., egg, nymph, and adult) affected the damage-related factors (numbers of new shoots and fruit formations, and harvest amount) of persimmons using both spatial analyses and linear relationships. The distribution of P. shantungensis eggs was spatially correlated with the one of persimmon fruit number. However, we did not find any linear relationships between the densities of P. shantungensis eggs and damage-related factors of persimmons. Instead, we found that the density of P. shantungensis correlated with the death of oviposited branches. From the developed model of branch death possibility based on egg mass density, 5.75 egg masses per newly developed branch were proposed as the decision-making level. The findings would help increase the efficiency of P. shantungensis management in persimmon orchards and develop decision-making levels for other insects.


Assuntos
Diospyros , Hemípteros , Inseticidas , Animais , Insetos , Frutas
15.
PLoS One ; 19(4): e0297945, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625904

RESUMO

The Brown planthopper (Nilaparvata lugens Stål; BPH) is known to cause significant damage to rice crops in Asia, and the use of host-resistant varieties is an effective and environmentally friendly approach for controlling BPH. However, genes limited resistance genes that are used in insect-resistant rice breeding programs, and landrace rice varieties are materials resources that carry rich and versatile genes for BPH resistance. Two landrace indica rice accessions, CL45 and CL48, are highly resistant to BPH and show obvious antibiosis against BPH. A novel resistance locus linked to markers 12M16.983 and 12M19.042 was identified, mapped to chromosome 12 in CL45, and designated Bph46. It was finely mapped to an interval of 480 kb and Gene 3 may be the resistance gene. Another resistance locus linked to markers RM26567 and 11MA104 was identified and mapped to chromosome 11 in CL48 and designated qBph11.3 according to the nominating rule. It was finely mapped to an interval of 145 kb, and LOC_Os11g29090 and LOC_Os11g29110 may be the resistance genes. Moreover, two markers, 12M16.983 and 11MA104, were developed for CL45 and CL48, respectively, using marker-assisted selection (MAS) and were confirmed by backcrossing individuals and phenotypic detection. Interestingly, we found that the black glume color is closely linked to the BPH resistance gene in CL48 and can effectively assist in the identification of positive individuals for breeding. Finally, several near-isogenic lines with a 9311 or KW genetic background, as well as pyramid lines with two resistance parents, were developed using MAS and exhibited significantly high resistance against BPHs.


Assuntos
Hemípteros , Oryza , Humanos , Animais , Mapeamento Cromossômico , Locos de Características Quantitativas , Oryza/genética , Genes de Plantas , Doenças das Plantas/genética , Cruzamentos Genéticos , Melhoramento Vegetal , Hemípteros/genética
16.
Pestic Biochem Physiol ; 200: 105838, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582600

RESUMO

Diaspididae are one of the most serious small herbivorous insects with piercing-sucking mouth parts and are major economic pests as they attack and destroy perennial ornamentals and food crops. Chemical control is the primary management approach for armored scale infestation. However, chemical insecticides do not possess selectivity in action and not always effective enough for the control of armored scale insects. Our previous work showed that green oligonucleotide insecticides (olinscides) are highly effective against armored and soft scale insects. Moreover, olinscides possess affordability, selectivity in action, fast biodegradability, and a low carbon footprint. Insect pest populations undergo microevolution and olinscides should take into account the problem of insecticide resistance. Using sequencing results, it was found that in the mixed populations of insect pests Dynaspidiotus britannicus Newstead and Aonidia lauri Bouche, predominates the population of A. lauri. Individuals of A. lauri comprised for 80% of individuals with the sequence 3'-ATC-GTT-GGC-AT-5' in the 28S rRNA site, and 20% of the population comprised D. britannicus individuals with the sequence 3'-ATC-GTC-GGT-AT-5'. We created olinscides Diasp80-11 (5'-ATG-CCA-ACG-AT-3') and Diasp20-11 (5'-ATA-CCG-ACG-AT-3') with perfect complementarity to each of the sequences. Mortality of insects on the 14th day comprised 98.19 ± 3.12% in Diasp80-11 group, 64.66 ± 0.67% in Diasp20-11 group (p < 0.05), and 3.77 ± 0.94% in the control group. Results indicate that for maximum insecticidal effect it is necessary to use an oligonucleotide insecticide that corresponds to the dominant species. Mortality in Diasp80-11 group was accompanied with significant decrease in target 28S rRNA concentration and was 8.44 ± 0.14 and 1.72 ± 0.36 times lower in comparison with control (p < 0.05) on the 10th and 14th days, respectively. We decided to make single nucleotide substitutions in Diasp20-11 olinscide to understand which nucleotide will play the most important role in insecticidal effect. We created three sequences with single nucleotide transversion substitutions at the 5'-end - Diasp20(5')-11 (A to T), 3'-end - Diasp20(3')-11 (T to A), and in the middle of the sequence - Diasp20(6)-11 (6th nitrogenous base of the sequence; G to C), respectively. As a result, mortality of mixed population of the field experiment decreased and comprised 53.89 ± 7.25% in Diasp20(5')-11 group, 40.68 ± 4.33% in Diasp20(6)-11 group, 35.74 ± 5.51% in Diasp20(3')-11 group, and 3.77 ± 0.94% in the control group on the 14th day. Thus, complementarity of the 3'-end nucleotide to target 28S rRNA was the most important for pronounced insecticidal effect (significance of complementarity of nucleotides for insecticidal effect: 5' nt < 6 nt < 3' nt). As was found in our previous research works, the most important rule to obtain maximum insecticidal effect is complete complementarity to the target rRNA sequence and maximum coverage of target sequence in insect pest populations. However, in this article we also show that the complementarity of 3'-end is a second important factor for insecticidal potential of olinscides. Also in this article we propose 2-step DNA containment mechanism of action of olinscides, recruiting RNase H. The data obtained indicate the selectivity of olinscides and at the same time provide a simple and flexible platform for the creation of effective plant protection products, based on antisense DNA oligonucleotides.


Assuntos
Hemípteros , Inseticidas , Humanos , Animais , Inseticidas/farmacologia , Oligonucleotídeos , Nucleotídeos , RNA Ribossômico 28S , Insetos/genética , Controle de Insetos/métodos
17.
Pestic Biochem Physiol ; 200: 105840, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582602

RESUMO

CAPA neuropeptides regulate the diuresis/ antidiuresis process in insects by activating specific cognate receptor, CAPAr. In this study, we characterized the CAPAr gene (BtabCAPAr) in the whitefly, Bemisia tabaci Asia II 1. The two alternatively spliced isoforms of BtabCAPAr gene, BtabCAPAr-1 and BtabCAPAr-2, having six and five exons, respectively, were identified. The BtabCAPAr gene expression was highest in adult whitefly as compared to gene expression in egg, nymphal and pupal stages. Among the three putative CAPA peptides, CAPA-PVK1 and CAPA-PVK2 strongly activated the BtabCAPAr-1 with very low EC50 values of 0.067 nM and 0.053 nM, respectively, in heterologous calcium mobilization assays. None of the peptide activated the alternatively spliced isoform BtabCAPAr-2 that has lost the transmembrane segments 3 and 4. Significant levels of mortality were observed when whiteflies were fed with CAPA-PVK1 at 1.0 µM (50.0%), CAPA-PVK2 at 100.0 nM (43.8%) and CAPA-tryptoPK 1.0 µM (40.0%) at the 96 h after the treatment. This study provides valuable information to design biostable peptides to develop a class of insecticides.


Assuntos
Hemípteros , Neuropeptídeos , Animais , Peptídeos/metabolismo , Neuropeptídeos/química , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Transdução de Sinais , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Hemípteros/genética , Hemípteros/metabolismo
18.
BMC Plant Biol ; 24(1): 243, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575896

RESUMO

BACKGROUND: Carrot is an important vegetable crop grown worldwide. The major economic problem in carrot cultivation is yellow disease caused by Bactericera trigonica, which induces biotic stress and has the greatest impact on crop productivity. Comprehensive studies on the mechanism of carrot defense response to biotic stress caused by B. trigonica infestation have yet to be conducted. METHODS: The changes in photosynthetic pigments, proline, TPC, H2O2 and MDA content, DPPH radical scavenging ability, and antioxidant enzyme activity of SOD, CAT, and POX in carrot leaves in response to insect sex (female and male), rapid response (during the first six hours), and long-term response to B. trigonica infestation were evaluated. RESULTS: The results of our study strongly suggest that B. trigonica infestation causes significant changes in primary and secondary metabolism and oxidative status of carrot leaves. Photosynthetic pigment content, TPC, and DPPH and CAT activities were significantly reduced in carrot leaves in response to insect infestation. On the other hand, proline, H2O2 content, and the activity of the antioxidant enzymes superoxide dismutase and peroxidase were increased in carrot leaves after B. trigonica infestation. The results indicate that B. trigonica attenuates and delays the oxidative stress responses of carrot, allowing long-term feeding without visible changes in the plant. Carrot responded to long-term B. trigonica infestation with an increase in SOD and POX activity, suggesting that these enzymes may play a key role in plant defense mechanisms. CONCLUSIONS: This is the first comprehensive study strongly suggesting that B. trigonica infestation causes significant changes in primary and secondary metabolism and an attenuated ROS defense response in carrot leaves that enables long-term insect feeding. The information provides new insights into the mechanisms of carrot protection against B. trigonica infestation.


Assuntos
Afídeos , Daucus carota , Hemípteros , Ftirápteros , Animais , Daucus carota/metabolismo , Afídeos/fisiologia , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Prolina/metabolismo , Ftirápteros/metabolismo
19.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442350

RESUMO

The Middle East Asia Minor 1 biotype of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) is a greenhouse and field crop pest of global significance. The objective of this study was to assess the potential of the generalist predatory thrips, Franklinothrips vespiformis Crawford (Thysanoptera: Aeolothripidae), as a biological control agent for B. tabaci. This was achieved by determining the functional responses of F. vespiformis larvae and adults to the egg and nymphal stages of B. tabaci under laboratory conditions. Analyses consisted of 10 replicates of each predator and prey stage combination on bean leaf discs for a 24-h period. Following logistic regression analyses to determine the functional response type exhibited, response parameters were estimated with nonlinear least squares regression using Roger's equation. Results showed that F. vespiformis larvae and adults exhibited a Type II functional response when feeding on immature B. tabaci. The handling times (Th) of F. vespiformis larvae and adults were magnitudes higher for B. tabaci nymphs than they were for eggs, which were in part driven by the higher attack rates (a) observed on eggs. The maximum attack rate (T/Th) for B. tabaci eggs and nymphs exhibited by first-stage larvae, second-stage larvae, and adult F. vespiformis increased with increasing predator age. Results from this study suggest that F. vespiformis larvae and particularly adults are promising biological control agents for B. tabaci and are efficient predators at both low and high prey densities.


Assuntos
Hemípteros , Tisanópteros , Animais , Óvulo , Ásia Oriental , Agentes de Controle Biológico , Larva , Ninfa
20.
Phys Rev E ; 109(2): L022401, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491648

RESUMO

Periodical cicadas exhibit life cycles with durations of 13 or 17 years, and it is now accepted that large prime cycles arose to avoid synchrony with predators. Less well explored is how, in the face of intrinsic biological and environmental noise, insects within a brood emerge together in large successive swarms from underground during springtime warming. Here, we consider the decision-making process of underground cicadas experiencing random, spatially correlated thermal microclimates such as those in nature. Introducing short-range communication between insects leads to an Ising model of consensus building with a quenched, spatially correlated random magnetic field and annealed site dilution, which displays the kinds of collective swarms seen in nature. These results highlight the need for fieldwork to quantify the spatial fluctuations in thermal microclimates and their relationship to the spatiotemporal dynamics of swarm emergence.


Assuntos
Hemípteros , Animais , Consenso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...